Learning and Prediction of Complex Molecular Structure- Property Relationships: Issues and Strategies for Modeling Intestinal Absorption for Drug Discovery

نویسنده

  • Rahul Singh
چکیده

The problem of modeling and predicting complex structure-property relationships, such as the absorption, distribution, metabolism, and excretion of putative drug molecules is a fundamental one in contemporary drug discovery. An accurate model can not only be used to predict the behavior of a molecule and understand how structural variations may influence molecular property, but also to identify regions of molecular space that hold promise in context of a specific investigation. However, a variety of factors contribute to the difficulty of constructing robust structure activity models for such complex properties. These include conceptual issues related to how well the true bio-chemical property is accounted for by formulation of the specific learning strategy, algorithmic issues associated with determining the proper molecular descriptors, access to small quantities of data, possibly on tens of molecules only, due to the high cost and complexity of the experimental process, and the complex nature of bio-chemical phenomena underlying the data. This chapter attempts to address this problem from the rudiments: the authors first identify and discuss the salient computational issues that span (and complicate) structure-property modeling formulations and present a brief review of the state-of-the-art. The authors then consider a specific problem: that of modeling intestinal drug absorption, where many of the aforementioned factors play a role. In addressing them, their solution uses a novel characterization of molecular space based on the notion of surface-based molecular similarity. This is followed by identifying a statistically relevant set of molecular descriptors, which along with an appropriate machine learning technique, is used to build the structure-property model. The authors propose simultaneous use of both ratio and ordinal error-measures for model construction and validation. The applicability of the approach is demonstrated in a real world case study. DOI: 10.4018/978-1-61520-911-8.ch013

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Issues in Computational Modeling of Molecular Structure-Property Relationships in Real-World Settings

The problem of modeling structure-property relationships is a fundamental one in contemporary biology and drug discovery. An accurate model can not only be used to predict the behavior of a molecule and understand how structural variations may influence molecular property, but also to identify regions of molecular space that hold promise in context of a specific investigation. However, a variet...

متن کامل

Quantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds

The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...

متن کامل

Prediction of drug absorption: different modeling approaches from discovery to clinical development.

Drug absorption modeling is a task that requires different tools depending on the drug development stage. Scientific progress and increased computer power have initiated a veritable revolution of modeling and simulation. Technical developments have enabled a high model complexity that was unthinkable only a couple of years ago. Today, model simulations can be used to guide experimental planning...

متن کامل

Prediction of Human Intestinal Absorption of Drug Compounds from Molecular Structure

The absorption of a drug compound through the human intestinal cell lining is an important property for potential drug candidates. Measuring this property, however, can be costly and time-consuming. The use of quantitative structure-property relationships (QSPRs) to estimate percent human intestinal absorption (%HIA) is an attractive alternative to experimental measurements. A data set of 86 dr...

متن کامل

Human Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine

Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015